
retardation of this wave and a certain magnification of its amplitude. Passing over a 
trough (b = -0.3) the bow wave accelerates and its amplitude diminishes as compared with 
the case of a level bottom. It is interesting to note that the second hump of the inflow- 
ing wave is described sufficiently well by the solution of the problem for a level bottom 
even if it is directly above an obstacle but is not described by the solution of the cor- 
responding problem for an infinite fluid. This indicates that the influence of bottom 
roughness on the free boundary shape appears not directly above an obstacle but is shifted 
in the direction of perturbation propagation. 

The free surface shape for a bottom profile described by the'function h(x) = 1 - b • 
[i +tanh ~(x-x0)]/2 at the timet = 12 is represented in Fig. 4. Here x 0 = 7, ~ = 0.33, 
b = • -i (curve i-3), and the front boundaries are xf = 11.21, 12.75, 14.46. All the 
assertions referring to the localized roughness are valid even in the case of a smooth pas- 
sage from one depth to another (see Fig. 4). The steepness of the wave will be smaller 
during emergence of the bow wave in the large depth domain, the greater the drop in depth. 
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SOLUTION OFT HE PROBLEM OF IDEAL FLUID FLOW IN THE NEIGHBORHOOD 

OF BODY AND WING APICES 

A. V. Voevodin and G. G. Sudakov UDC 532.5 

For a uniformly accurate description of ideal fluid flow around three-dimensional 
bodies, the nature of its asymptotic behavior must be known in the neighborhood of the 
singular points that are the body and wing apices, for example. It is known that in the 
neighborhood of sharp apices the flow potential depends as a power-law on the distance to 
the apex. 

An algorithm is proposed in this paper to solve eigenvalue problems by using the method 
of ~'vortex frames" and a panel method that permit finding the eigenvalues of the exponent 
and eigenfunctions of the problem. Examples are presented of application of the proposed 
method for problems of the flow around delta wing apices and apices of a body in the form 
of a circular cone that have an exact solution (the problems reduce to solving an ordinary 
differential equation). A comparison is given between the results of computations and the 
exact solutions. 

i. Let us examine the problem of irrotational ideal fluid flow around a body apex or 
a wing angular point with half-angle 8 at the apex. Let us introduce a Cartesian rectangu- 
lar x, y, z coordinate system with x axis directed along the line of body (wing) sym~metry, 
z axis in the plane of the wing (in the case of a cone, arbitrarily but perpendicular to 
the x axis), and y axis perpendicular to the x and z axes. The potential of the flow being 
investigated should satisfy the three-dimensional Laplace equation with boundary conditions 
of nonpenetration on the body (wing) surface. By virtue of the boundary conditions the 
problem is self-similar and, following [1-3], we seek its solution in the form 

= c x ~ / x ,  z/x, o) ( 1 . 1 )  
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3, pp. 60"65, May-June, 1990. Original article submitted April 7, 1988; revision submitted 
January 31, 1989. 

0021-8944/90/3103-0395512.50 �9 1991 Plenum Publishing Corporation 395 



Check section 

/#=I 

I 

I 

25 4,9 49 

J 
2 

/ 

z=7 

50 

Fig. i 

[ is a dimensionless function to be determined, C is a dimensional constant that is found 
only from the condition for merger with the solution of the external problem of the flow 
around a body (wing) of finite dimensions]. 

Since the dependence on the longitudinal coordinate is given by Eq. (i.i), it is suffi- 
cient to pose the nonpenetration condition only in one arbitrary body (wing) transverse 
section. The Neumann problem for the Laplace equation in the case of a wing angular point 
was solved in [i-3] by the method of separation of variables in a spherical coordinate sys- 
tem. As is shown in [4, 5], the problem under investigation reduces to the solution of a 
linear singular integral equation. In this case by virtue of the boundary conditions this 
equation is homogeneous, C in Eq. (i.i) drops out of the subsequent considerations, and 
nontrivial solutions exist only for certain n (the eigenvalue problem). Let us note that 
the desired self-similar solution is also an asymptotic of the solution of broader classes 
of nondegenerate nonself-similar problems about the flow around bodies of finite dimensions 
[6]. 

The methods of "vortex frames" (in the case of a wing angular point) or a panel method 
(in the case of a body apex) that result in a linear homogeneous system of equations were 
used for the numerical solution of the integral equation. The condition of degeneracy of 
this system determines the unknown quantity n in Eq. (i.I). This problem is a representa- 
tive of the class of eigenvalue problems that was not solved earlier by the method of "dis- 
crete vortices," "vortex frames," or the panel method For instance, the problem is not 
mentioned in [4, 7], where a detailed analysis is contained of the formulation of problems 
solved by the "discrete vortices" method. 

The solution in the neighborhood of the apex in investigations of the flow around 
bodies and wings of finite dimensions is representable in the form of the sum of the eigen- 
functions obtained multiplied by dimensional constants related to the characteristic dimen- 
sional quantities of the complete inhomogeneous problem. 

2. Let us consider the problem of fluid flow in the neighborhood of a wing angular 
point. The flow potential can be represented in the form of a double-layer potential, where 
the condition of nonpenetration on the wing surface y = 0 (see [4, 5]) is 

J [(~_-~-~Z~)=]3/~ = O, (2.1) 
s 

where r(~, ~) is the intensi ty  of the double-layer potential jump, and S is part of the 
plane y = 0; x > 0; Iz/x I < X; ~ = tan 8. By virtue of assumption (i.i) 

r(~, ~) ~nV(~/~)" (2.2)  

Taking Eq. (2.2)  in to  account, Eq. (2.1)  r e s u l t s  in a l i nea r  homogeneous s ingular  i n t e g r a l  
equation in y. In order for this equation to have a nontrivial solution it is necessary 
to formulate the condition for its degeneracy, from which the unknown quantity n is indeed 
found. 

Let us separate the whole domain S into a set of quadrangles Sk, s by using a mesh 
formed by rays emerging from the origin and by the lines x = const (Fig. i). If we assume 
r(~, ~) = rk, s = const for ~, ~ e Sk,s then following [4] the method of "vortex frames" 

can be utilized for the numerical solution of Eq. (2.1) where the circulation of the vortex 
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frame located on the boundary of Sk, ~ will be Fk, s Since the transverse wing dimension 

increases linearly with the growth of x, a nonuniform partition was selected along the x 
axis. Along the z axis the mesh was Constructed according to the cosine law. Therefore, 
the coordinates of the nodal points were selected as follows: 

--Xo+hAx 
x ~ = e  , ~ , l = - - ~ x k c o s ( n l / ( L +  l ) ) , k = t  . . . . .  K , l = t  . . . . .  L ( 2 . 3 )  

(x0, hx, K, L are given numbers). The check point coordinates are expressed analogously 

X* e -x~ * = , zz = - -  ~x* cos (~ (l - -  0.5)/L), I = t . . . . .  L, ( 2 . 4 )  

where k, is a certain given number, k, < K. Used in the computations were the parameters: 
K = 50, L = I0, k, = 25, Ax = X/K, x 0 = -5. 

Thus, the panel Sk, s is a quadrangle with coordinates (x k, Zk,~+l), (Xk+1, Zk+i,s 

(Xk+ I, Zk+1,~), and (Xk, Zk,~), k = 1 ..... K, ~ = 1 ..... L~ The exception is the last 

panel on each ray SK, ~, for which XK+ s = ~ (see Fig. i). Then in conformity with Eq. (2.2) 

Fh. ~ = Gz(xk*) n, l = t ,  . . . ,  L ,  k = 1, . . . ,  K - -  1, ( 2 . 5 )  

, --Xo+(k+O,5)Ax 
~h ~ e  

a l o n g  t h e  r a y .  i n  t h e  l a s t  p a n e l  s K i t  i s  a s s u m e d  

FK, z = Glx n, x > x K ,  l = I . . . . .  L .  ( 2 . 6 )  

The c o n d i t i o n  o f  n o n p e n e t r a t i o n  i n  t h e  f i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n  ( 2 . 3 ) - ( 2 . 6 )  t a k e s  
the form 

L 
E A m ,  z G z =  O, m = l  . . . . .  L,  A m j =  E Wm,h,l(X;) n-l+ V~ l' (2.7) 
l =  1 k = l  

where Vm,k, s is the vertical velocity comPonent from a "vortex frame" of unit intensity 
. as (the panel Sk, s to the check point x*, ZmX, and Vm, ~ is the asymptotic estimate of the 

of the integral in Eq. (2.1) along the panel Sk, s which is obtained by using a series 

expansion of the integrand in Eq. (2.1) in the small parameter x*/$, ~ e SK, s with Eq. (2.6). 

taken into account. Let the panel SK, s be formed by the rays z = X~x, z = X~+ix, IX~+I - 

Xs ~ 1 as well as the line x = x K. Then we obtain the estimate 

4n ( i + X ~ ) 3 / 2 L n - i  2(2- -n )  xK + - -  -~" ~ ~ ( 2 . 8 )  

•  + . . . .  B = - - .  ~+z~ ' 

for the velocity V as m,s at the check point with number m. Thus, we arrive at a system of 

linear equations (2.7) with zero right side. Analysis of the degeneracy of this system, 
performed numerically, permits determination of the unknown eigenvalue n of the problem 
as well as finding the eigenfunction rk, s from Eq. (2.5). 

as It should be noted that insertion of Vm, s in Eq. (2.7) is essential since very large 
values of K unacceptable for an electronic computer (for a fixed number of the check section 

Vas k,) must be taken if it is not present. Three terms in m,s were retained in the computa- 

tions. As n increases the quantityof terms in the expansion (2.8) should also grow. 
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Results of computing the eigenvalues and eigenfunctions in the range 0 < n < 2 are 
displayed in Figs. 2 and 3 in comparison with the results of [2, 3] (the solid lines are 
from this paper, the squares are the numerical method in [3], and N is the number of the 
eigenfunction). The agreement can be acknowledged good throughout. 

3. Let us investigate the problem of ideal fluid flow in the neighborhood of the apex 
of a circular cone. For its numerical solution we partition the cone surface for x ~ x K 
into quadrangular panels by the planes x = const and a = const (tan o = y/z). We select 
the partition along the angle a to be uniform and the distance between the sections along 
x such that Rk+ I - R k = [(~Rk+l)/2L] sin 8, R K = i0, Rk+ I - R k ~ R k (R is the distance from 

the cone apex, L is the quantity of partitions along the angle in a quarter cone, and K 
along the x axis, while k = ] ..... K). For R > R K we have 4L semi-infinite panels. Let 
us introduce a source distribution on the panel surfaces. Then the nonpenetration condition 
can be written in the form 

where 

t iC .n )  = 0,  (3.i) 

1 V = ~ y (' Q [(~ - ~) i + ( ~ -  ~) i + (~ - ~) kl d~. 
j [(~ - ~)~ + (y - , 1 )  ~ + (,- - ~)~p/~ ' 

n ~ sin 0i--cos 0 sin aj -- cos 0 cos ok is the inner normal, Q(x, o) = Rn-lq(o) is the source dis- 
tribution density. We arrange the check points in the sections k = k, at the points R* = 
(R k + Rk+1)/2 , k = k,, ys = R ~ sin8 sinos zs162 = R* sin9 cosos at* = [~(2s - I)/4L], 

s -- I, ..., L. The source distribution density is constant along the panel in the computa- 
tions 

Q(x, c) = (Rh*)'~-lqz . for  x ~< xx,  

R~* = (Rh + Rk+0/2,  k = i . . . .  , K.  ( 3 . 2 )  

Substituting Eq. (3.2) into Eq. (3.1), we obtain a system of equations of the type (2.7): 
L K 

vas E A m , m  = o, m = t . . . . .  L, Am,~ = E vm,~,~ ( R ; )  ~-~ + ~,,. 
l = 1  h ~ l  

Here Vm,k, s is the velocity component normal to the cone surface at the point x ~'c = R * cos0, 

Ym*, Zm*, induced by the quadrangular panel with subscripts k, s and source density one; 
Vas m,s is the asymptotic estimate for small R*/R of the normal velocity component induced 

by a narrow semi-infinite panel of sources (R > R K) whose density distribution changes as 
R n. If the contributions to the normal velocity component from four such panels, located 

- as at arctan (y/z)= o, -o, ~ - o, ~ + o, are summed then we have for three terms of the Vm, s 

expansion 

a s  q l  �9 * . * ( i R *  

= ol sm ~ i-- n - I n -- 2 a---~ + 
V~,z ~ s m  sin~ 0 cos 0 R~  -~ 3 cos20 
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@ [ 3 - - ~ c o s '  0 + ~ s i n 2 2 0 -  15 sin'  0 cos2 o; cos~ o*~ - -  

' 5 s in~ .0  (eose(~ I ~ * �9 2 * 2 *)]  I _ _ ~ / R * ~  2 . } 
- -  --2 * cos ~m + s m  oi sin am n -- 3 kBK] "-]- "'" 

for q(o) =-q(-o) or 

Vm,l = ~--~ sin2 0 cos 0 I,K ~n--~-T + cos2 0 - -  sin2 0X 

�9 * . 2  * * ) I R *  3 f R * U x  •  cos"~(~m + m n  oz sin om . Bx 2 ( n - -  3) ~,~K) 

• [ I - -  5 cos t 0 - -  5 sin 2 0 ( i - - 3  cos 20)(cos 2 o~ cos ~ o * +  sin 2 ~ sin 2 ~ ) ] - I - . . .  } 

for q(o) = q(-o). 

The computed eigenfunctions are shown in Fig. 4 for different n (N is the number of 
the eigenfunction). 

The problem about the bow around the apex of a circular cone can be reduced to the 
solution of an ordinary differential equation. Let us write the Laplace equation in spheri- 
cal coordinates R, ~, o (x = R cos~, y = R sin~ sin o, z = R sin~ coso) 

02cI) 2 0cI) t 02ci ) ctg [3 0q) t 0~cI) ----- 0. 
oRf  + ~- ~-  + ~ ~ + - 7 -  ~ + R ~ si .  ~ ~ 0~ 2 

Substituting a potential in the form ~ = CRnh(o)f(~) into this equation, we obtain 

sinf~ [n(n  ~- t ) / +  c t g ~ l ' - b  1"1 h" = p 2  ] = - ~  

(p  = c o n s t ) .  By v i r t u e  o f  t h e  p e r i o d i c i t y  o f  t h e  p o t e n t i a l  i n  o,  we h a v e  h ( a )  = s i n  (po  + 
5 a ) ,  p = O, 1,  . . . ,  w h e r e  5~ = 0 f o r  0 ( o )  = - 0 ( - o ) ,  5o = v / 2  f o r  ~ ( o )  = r  We w r i t e  
the following equation for the function f 

] "  ~- ctg ~ f' + [n(n -+- t) - pVsin 2 ~ 1 / -  O. ( 3 . 3 )  

The b o u n d a r y  c o n d i t i o n s  f o r  Eq. ( 3 . 3 )  a r e  t h e  n o n p e n e t r a t i o n  c o n d i t i o n s  on t h e  c o n e  s u r f a c e  
f ' ( O )  = 0 and  b o u n d e d n e s s  o f  t h e  p o t e n t i a l  on t h e  x a x i s  f o r  x < 0 [ I f ( ~ ) l  < ~ ] .  I n  g e n -  
e r a l ,  only the function f(~) = 0 satisfies Eq. (3.3) with the boundary conditions mentioned 
and only for certain n are there nontrivial solutions (the eigenvalue problem). The solu- 
tion of this problem can be obtained numerically with high accuracy. 

A comparison between the eigennumbers computed by the panel method (markers) and the 
dependences n(e) obtained from the solution of Eq. (3.3) is presented in Fig. 5. Good agree- 
ment between the results is observed in the range of numbers n investigated. 

4. An important aspect of the application of the proposed method is the construction 
of substantially three-dimensional test-problems to estimate the accuracy of numerical 
methods (the "vortex frame" method, the panel method, etc. ) since there are exact solutions 
of the appropriate problems (see [3] and Sec. 3 of this paper) in two particular cases (the 
apex of a delta wind and a circular cone). 
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INTERACTION OF PLANE NON-PARALLEL JETS 

Yu. G. Gurevich UDC 532.526 

The collision of near-wall jets on a smooth surface was examined by many authors [i, 
2]. Within the framework of the theory of potential jet flows, the position of the inter- 
action domain remains undetermined in this problem while the direction of the resultant 
jet is determined uniquely. Taking account of viscosity permits finding the position of 
the interaction domain [3]. It is important to note that integral conservation laws and 
the assumption that viscosity is not essential in the interaction domain are sufficient 
to establish the direction of the resultant jet. It is not necessary to know the pressure 
distribution on the surface here. 

A feature of the problem of jet collision in the neighborhood of a corner is the fact 
that the integral conservation laws do not permit establishment of the direction of the 
resultant jet if the pressure distribution on the surface is not known in the interaction 
domain. The solution of this problem within the framework of the theory of potential jet 
flows is also not unique and does not permit the unique determination of the resultant jet 
direction. 

A simple approximation solution of the problem of the collision of plane submerged 
incompressible near-wall jets in the neighborhood of a corner is represented in this paper 
within the framework of the infinitely thin jet approximation. Laminar and turbulent flow 
are examined in a quasilaminar approximation. It is noted that small changes in the inter- 
acting jet parameters can radically alter the resultant jet direction. The expediency is 
also shown of utilizing the infinitely thin jet approximation in other jet flow problems. 
A qualitative examination is performed of problems about jet impact in a corner and on the 
collision of several jets in space. 

I. Let two plane near-wall submerged jets directed toward the line of plane inter- 
section be propagated along two intersecting planes ~i and ~2 (Fig. i). The angle 7 between 
the planes and the coordinates x I and x 2 are taken along the surfaces gl and ~2, respective- 
ly, along the normals to the line of intersection on which x I = 0, x 2 = 0. Let us assume 
that the domain of jet interaction lies near a point with~coordinates x~ = 0, x 2 = 0 and 
that the jet parameters at a certain distance from the corner are independent of the flow 
in the interaction domain. It is assumed that the jet sources are sufficiently remote from 
the interaction domain. We assume that the flow therein is stationary and has the following 
configuration: near the corner each of the jets is separated from the surface (xl ~ and 
x2 ~ are the coordinates of the point of jet separation on the surfaces ~l and ~2), the flow 
in front of the separation point is unperturbed, behind the separation point a domain is 
shaped with small changes in the pressure and low velocities which is considered stagnant, 
and one resultant jet is formed because of the collision. Assuming the jet parameters out- 
side the interaction domain known for x I > xl ~ and x 2 > x2 ~ we determine the resultant 
jet direction, the pressure in the stagnant zone, and its characteristic dimensions. 

The question of the motion of the jet being separated must be examined to solve the 
formulated problem. Later the jet motion after separation is investigated in the infinite- 
ly thin jet (ITJ) approximation. 

2. Let $ be a vector line of the momentum field and outside this line the momentum 
equals zero. Let us write the momentum conservation law in the $, �9 coordinate system 
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